home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Programming Languages Suite
/
ProgramD2.iso
/
Borland
/
Borland C++ V5.02
/
TEMPLDEF.PAK
/
ARRAY.CTT
< prev
next >
Wrap
Text File
|
1997-05-06
|
16KB
|
608 lines
////////////////////////////////////////////////////////////////////////////
// class CArray<TYPE, ARG_TYPE> - an array containing 'TYPE' elements,
// passed in parameters as ARG_TYPE
//
// optional definitions:
// IS_SERIAL - include serialization (see below for types)
// IS_RAW_SERIAL - use CArchive::Write and Read for serialization
// IS_ARCHIVE_SERIAL - use CArchive insersion, extraction for serialization
// HAS_CREATE - call constructors and destructors
//
// This is a part of the Microsoft Foundation Classes C++ library.
// Copyright (C) 1992 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Microsoft Foundation Classes Reference and related
// electronic documentation provided with the library.
// See these sources for detailed information regarding the
// Microsoft Foundation Classes product.
////////////////////////////////////////////////////////////////////////////
//$DECLARE_TEMPLATE
////////////////////////////////////////////////////////////////////////////
template<class TYPE, class ARG_TYPE>
class CArray : public CObject
{
$ifdef IS_SERIAL
DECLARE_SERIAL(CArray)
$else
DECLARE_DYNAMIC(CArray)
$endif //!IS_SERIAL
public:
// Construction
CArray();
// Attributes
int GetSize() const;
int GetUpperBound() const;
void SetSize(int nNewSize, int nGrowBy = -1);
// Operations
// Clean up
void FreeExtra();
void RemoveAll();
// Accessing elements
TYPE GetAt(int nIndex) const;
void SetAt(int nIndex, ARG_TYPE newElement);
TYPE& ElementAt(int nIndex);
// Direct Access to the element data (may return NULL)
const TYPE* GetData() const;
TYPE* GetData();
// Potentially growing the array
void SetAtGrow(int nIndex, ARG_TYPE newElement);
int Add(ARG_TYPE newElement);
int Append(const CArray& src);
void Copy(const CArray& src);
// overloaded operator helpers
TYPE operator[](int nIndex) const;
TYPE& operator[](int nIndex);
// Operations that move elements around
void InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1);
void RemoveAt(int nIndex, int nCount = 1);
void InsertAt(int nStartIndex, CArray* pNewArray);
// Implementation
protected:
TYPE* m_pData; // the actual array of data
int m_nSize; // # of elements (upperBound - 1)
int m_nMaxSize; // max allocated
int m_nGrowBy; // grow amount
public:
~CArray();
$ifdef IS_SERIAL
void Serialize(CArchive&);
$endif //IS_SERIAL
#ifdef _DEBUG
void Dump(CDumpContext&) const;
void AssertValid() const;
#endif
protected:
// local typedefs for class templates
typedef TYPE BASE_TYPE;
typedef ARG_TYPE BASE_ARG_TYPE;
};
//$IMPLEMENT_TEMPLATE_INLINES
////////////////////////////////////////////////////////////////////////////
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE int CArray<TYPE, ARG_TYPE>::GetSize() const
{ return m_nSize; }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE int CArray<TYPE, ARG_TYPE>::GetUpperBound() const
{ return m_nSize-1; }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE void CArray<TYPE, ARG_TYPE>::RemoveAll()
{ SetSize(0); }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE TYPE CArray<TYPE, ARG_TYPE>::GetAt(int nIndex) const
{ ASSERT(nIndex >= 0 && nIndex < m_nSize);
return m_pData[nIndex]; }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE void CArray<TYPE, ARG_TYPE>::SetAt(int nIndex, ARG_TYPE newElement)
{ ASSERT(nIndex >= 0 && nIndex < m_nSize);
m_pData[nIndex] = newElement; }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE TYPE& CArray<TYPE, ARG_TYPE>::ElementAt(int nIndex)
{ ASSERT(nIndex >= 0 && nIndex < m_nSize);
return m_pData[nIndex]; }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE const TYPE* CArray<TYPE, ARG_TYPE>::GetData() const
{ return (const TYPE*)m_pData; }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE TYPE* CArray<TYPE, ARG_TYPE>::GetData()
{ return (TYPE*)m_pData; }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE int CArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement)
{ int nIndex = m_nSize;
SetAtGrow(nIndex, newElement);
return nIndex; }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE TYPE CArray<TYPE, ARG_TYPE>::operator[](int nIndex) const
{ return GetAt(nIndex); }
template<class TYPE, class ARG_TYPE>
_AFXCOLL_INLINE TYPE& CArray<TYPE, ARG_TYPE>::operator[](int nIndex)
{ return ElementAt(nIndex); }
//$IMPLEMENT_TEMPLATE
// This is a part of the Microsoft Foundation Classes C++ library.
// Copyright (C) 1992-1995 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Microsoft Foundation Classes Reference and related
// electronic documentation provided with the library.
// See these sources for detailed information regarding the
// Microsoft Foundation Classes product.
/////////////////////////////////////////////////////////////////////////////
//
// Implementation of parameterized Array
//
/////////////////////////////////////////////////////////////////////////////
// NOTE: we allocate an array of 'm_nMaxSize' elements, but only
// the current size 'm_nSize' contains properly constructed
// objects.
#include "stdafx.h"
#ifdef AFX_COLL_SEG
#pragma code_seg(AFX_COLL_SEG)
#endif
#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
#define new DEBUG_NEW
$ifdef HAS_CREATE
/////////////////////////////////////////////////////////////////////////////
#include "elements.h" // used for special creation
static void ConstructElements(TYPE* pNewData, int nCount)
{
ASSERT(nCount >= 0);
while (nCount--)
{
ConstructElement(pNewData);
pNewData++;
}
}
static void DestructElements(TYPE* pOldData, int nCount)
{
ASSERT(nCount >= 0);
while (nCount--)
{
DestructElement(pOldData);
pOldData++;
}
}
static void CopyElements(TYPE* pDest, TYPE* pSrc, int nCount)
{
ASSERT(nCount >= 0);
while (nCount--)
{
*pDest = *pSrc;
++pDest;
++pSrc;
}
}
$endif //HAS_CREATE
/////////////////////////////////////////////////////////////////////////////
template<class TYPE, class ARG_TYPE>
CArray<TYPE, ARG_TYPE>::CArray()
{
m_pData = NULL;
m_nSize = m_nMaxSize = m_nGrowBy = 0;
}
template<class TYPE, ARG_TYPE>
CArray<TYPE, ARG_TYPE>::~CArray()
{
ASSERT_VALID(this);
$ifdef HAS_CREATE
DestructElements(m_pData, m_nSize);
$endif //HAS_CREATE
delete[] (BYTE*)m_pData;
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::SetSize(int nNewSize, int nGrowBy)
{
ASSERT_VALID(this);
ASSERT(nNewSize >= 0);
if (nGrowBy != -1)
m_nGrowBy = nGrowBy; // set new size
if (nNewSize == 0)
{
// shrink to nothing
$ifdef HAS_CREATE
DestructElements(m_pData, m_nSize);
$endif //HAS_CREATE
delete[] (BYTE*)m_pData;
m_pData = NULL;
m_nSize = m_nMaxSize = 0;
}
else if (m_pData == NULL)
{
// create one with exact size
#ifdef SIZE_T_MAX
ASSERT(nNewSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)];
$ifdef HAS_CREATE
ConstructElements(m_pData, nNewSize);
$else
memset(m_pData, 0, nNewSize * sizeof(TYPE)); // zero fill
$endif
m_nSize = m_nMaxSize = nNewSize;
}
else if (nNewSize <= m_nMaxSize)
{
// it fits
if (nNewSize > m_nSize)
{
// initialize the new elements
$ifdef HAS_CREATE
ConstructElements(&m_pData[m_nSize], nNewSize-m_nSize);
$else
memset(&m_pData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(TYPE));
$endif
}
$ifdef HAS_CREATE
else if (m_nSize > nNewSize) // destroy the old elements
DestructElements(&m_pData[nNewSize], m_nSize-nNewSize);
$endif
m_nSize = nNewSize;
}
else
{
// otherwise, grow array
int nGrowBy = m_nGrowBy;
if (nGrowBy == 0)
{
// heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = min(1024, max(4, m_nSize / 8));
}
int nNewMax;
if (nNewSize < m_nMaxSize + nGrowBy)
nNewMax = m_nMaxSize + nGrowBy; // granularity
else
nNewMax = nNewSize; // no slush
ASSERT(nNewMax >= m_nMaxSize); // no wrap around
#ifdef SIZE_T_MAX
ASSERT(nNewMax <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
// construct remaining elements
ASSERT(nNewSize > m_nSize);
$ifdef HAS_CREATE
ConstructElements(&pNewData[m_nSize], nNewSize-m_nSize);
$else
memset(&pNewData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(TYPE));
$endif
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
}
template<class TYPE, class ARG_TYPE>
int CArray<TYPE, ARG_TYPE>::Append(const CArray& src)
{
ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
int nOldSize = m_nSize;
SetSize(m_nSize + src.m_nSize);
$ifdef HAS_CREATE
CopyElements(m_pData + nOldSize, src.m_pData, src.m_nSize);
$else
memcpy(m_pData + nOldSize, src.m_pData, src.m_nSize * sizeof(TYPE));
$endif
return nOldSize;
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::Copy(const CArray& src)
{
ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
SetSize(src.m_nSize);
$ifdef HAS_CREATE
CopyElements(m_pData, src.m_pData, src.m_nSize);
$else
memcpy(m_pData, src.m_pData, src.m_nSize * sizeof(TYPE));
$endif
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::FreeExtra()
{
ASSERT_VALID(this);
if (m_nSize != m_nMaxSize)
{
// shrink to desired size
#ifdef SIZE_T_MAX
ASSERT(m_nSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = NULL;
if (m_nSize != 0)
{
pNewData = (TYPE*) new BYTE[m_nSize * sizeof(TYPE)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
}
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nMaxSize = m_nSize;
}
}
/////////////////////////////////////////////////////////////////////////////
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::SetAtGrow(int nIndex, ARG_TYPE newElement)
{
ASSERT_VALID(this);
ASSERT(nIndex >= 0);
if (nIndex >= m_nSize)
SetSize(nIndex+1);
m_pData[nIndex] = newElement;
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::InsertAt(int nIndex, ARG_TYPE newElement, int nCount)
{
ASSERT_VALID(this);
ASSERT(nIndex >= 0); // will expand to meet need
ASSERT(nCount > 0); // zero or negative size not allowed
if (nIndex >= m_nSize)
{
// adding after the end of the array
SetSize(nIndex + nCount); // grow so nIndex is valid
}
else
{
// inserting in the middle of the array
int nOldSize = m_nSize;
SetSize(m_nSize + nCount); // grow it to new size
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex],
(nOldSize-nIndex) * sizeof(TYPE));
// re-init slots we copied from
$ifdef HAS_CREATE
ConstructElements(&m_pData[nIndex], nCount);
$else
memset(&m_pData[nIndex], 0, nCount * sizeof(TYPE));
$endif
}
// insert new value in the gap
ASSERT(nIndex + nCount <= m_nSize);
while (nCount--)
m_pData[nIndex++] = newElement;
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::RemoveAt(int nIndex, int nCount)
{
ASSERT_VALID(this);
ASSERT(nIndex >= 0);
ASSERT(nCount >= 0);
ASSERT(nIndex + nCount <= m_nSize);
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount);
$ifdef HAS_CREATE
DestructElements(&m_pData[nIndex], nCount);
$endif
if (nMoveCount)
memcpy(&m_pData[nIndex], &m_pData[nIndex + nCount],
nMoveCount * sizeof(TYPE));
m_nSize -= nCount;
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::InsertAt(int nStartIndex, CArray* pNewArray)
{
ASSERT_VALID(this);
ASSERT(pNewArray != NULL);
ASSERT_KINDOF(CArray, pNewArray);
ASSERT_VALID(pNewArray);
ASSERT(nStartIndex >= 0);
if (pNewArray->GetSize() > 0)
{
InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize());
for (int i = 0; i < pNewArray->GetSize(); i++)
SetAt(nStartIndex + i, pNewArray->GetAt(i));
}
}
$ifdef IS_ARCHIVE_SERIAL
/////////////////////////////////////////////////////////////////////////////
// Serialization
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::Serialize(CArchive& ar)
{
ASSERT_VALID(this);
CObject::Serialize(ar);
if (ar.IsStoring())
{
ar.WriteCount(m_nSize);
for (int i = 0; i < m_nSize; i++)
ar << m_pData[i];
}
else
{
DWORD nOldSize = ar.ReadCount();
SetSize(nOldSize);
for (int i = 0; i < m_nSize; i++)
ar >> m_pData[i];
}
}
$endif //IS_ARCHIVE_SERIAL
$ifdef IS_RAW_SERIAL
/////////////////////////////////////////////////////////////////////////////
// Serialization
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::Serialize(CArchive& ar)
{
ASSERT_VALID(this);
CObject::Serialize(ar);
if (ar.IsStoring())
{
ar.WriteCount(m_nSize);
ar.Write(m_pData, m_nSize * sizeof(TYPE));
}
else
{
DWORD nOldSize = ar.ReadCount();
SetSize(nOldSize);
ar.Read(m_pData, m_nSize * sizeof(TYPE));
}
}
$endif //IS_RAW_SERIAL
$ifdef IS_SWAP_SERIAL
/////////////////////////////////////////////////////////////////////////////
// Serialization
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::Serialize(CArchive& ar)
{
ASSERT_VALID(this);
CObject::Serialize(ar);
if (ar.IsStoring())
{
ar.WriteCount(m_nSize);
#ifdef _MAC
if (!ar.IsByteSwapping())
#endif
ar.Write(m_pData, m_nSize * sizeof(TYPE));
#ifdef _MAC
else
{
// write each item individually so that it will be byte-swapped
for (int i = 0; i < m_nSize; i++)
ar << m_pData[i];
}
#endif
}
else
{
DWORD nOldSize = ar.ReadCount();
SetSize(nOldSize);
ar.Read(m_pData, m_nSize * sizeof(TYPE));
#ifdef _MAC
if (ar.IsByteSwapping())
{
for (int i = 0; i < m_nSize; i++)
_AfxByteSwap(m_pData[i], (BYTE*)&m_pData[i]);
}
#endif
}
}
$endif //IS_SWAP_SERIAL
/////////////////////////////////////////////////////////////////////////////
// Diagnostics
#ifdef _DEBUG
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::Dump(CDumpContext& dc) const
{
CObject::Dump(dc);
dc << "with " << m_nSize << " elements";
if (dc.GetDepth() > 0)
{
for (int i = 0; i < m_nSize; i++)
dc << "\n\t[" << i << "] = " << m_pData[i];
}
dc << "\n";
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::AssertValid() const
{
CObject::AssertValid();
if (m_pData == NULL)
{
ASSERT(m_nSize == 0);
ASSERT(m_nMaxSize == 0);
}
else
{
ASSERT(m_nSize >= 0);
ASSERT(m_nMaxSize >= 0);
ASSERT(m_nSize <= m_nMaxSize);
ASSERT(AfxIsValidAddress(m_pData, m_nMaxSize * sizeof(TYPE)));
}
}
#endif //_DEBUG
#ifdef AFX_INIT_SEG
#pragma code_seg(AFX_INIT_SEG)
#endif
$ifdef IS_SERIAL
IMPLEMENT_SERIAL(CArray, CObject, 0)
$else
IMPLEMENT_DYNAMIC(CArray, CObject)
$endif //!IS_SERIAL
/////////////////////////////////////////////////////////////////////////////